
Parallel Hex Meshing from Volume Fractions

Steven J. Owen, Matthew L. Staten, Marguerite C. Sorensen

†Sandia National Laboratories, Albuquerque, New Mexico, U.S.A.
sjowen@sandia.gov, mlstate@sandia.gov, mcsoren@sandia.gov

Summary. In this work, we introduce a new method for generating Lagrangian
computational meshes from Eulerian-based data. We focus specifically on shock
physics problems that are relevant to Eulerian-based codes that generate volume
fraction data on a Cartesian grid. A step-by-step procedure for generating an all-
hexahedral mesh is presented. We focus specifically on the challenges of developing
a parallel implementation using the message passing interface (MPI) to ensure a
continuous, conformal and good quality hex mesh.

Key words: grid-based, overlay grid, hexahedral mesh generation, parallel
meshing, non-manifold

1 Introduction

Computational simulation must often be performed on domains where ma-
terials are represented as scalar quantities or volume fractions at cell centers
of a Cartesian or octree-based grid. Common examples include bio-medical,
geotechnical or shock physics calculations where interface boundaries are rep-
resented only as discrete statistical approximations. Sandia Lab’s, CTH code,
is an example of an application that utilizes an Eulerian grid as its compu-
tational domain. The results of a CTH calculation are represented as volume
fractions in the individual cells of the domain. In practice, this is represented
as a 3-dimensional array of scalar values ranging from 0.0 to 1.0, where 1.0 rep-
resents material that completely fills the volume of the cell, and 0.0 represents
the absence of material. Values that fall between represent the percentage of
material, by volume, that is filling the volume of the cell.

We wish to provide a capability for the results from an Eulerian-based
code to be used as input to a Langrangian, or finite element based code. To
accomplish this, the scalar volume fraction data array must be interpreted

†Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lock-
heed Martin Company for the United States Department of Energy’s National Nu-
clear Security Administration under contract DE-AC04-94AL85000

2 S. Owen, M. Staten, and M. Sorensen

and converted into a boundary aligned hexahedral mesh that is of sufficient
quality to be used in a finite element calculation.

In this work we introduce new approaches to solving the all-hex meshing
problem from volume fraction data that specifically address the problem in the
context of distributed memory parallel processing. We also introduce improved
methods applicable for both serial and parallel processing. For example a new
primal-contouring approach is introduced for defining the material domains.
We describe a step-by-step procedure that includes new methods for node
smoothing, resolving non-manifold conditions as well as defining geometry for
parallel subdomains.

The development of general-purpose unstructured hexahedral mesh gener-
ation procedures for an arbitrary domain have been a major challenge for the
research community. A wide variety of techniques and strategies have been
proposed for this problem. It is convenient to classify these methods into
two categories: geometry-first and mesh-first. In the former case, a topology
and geometry foundation is used upon which a set of nodes and elements
is developed. Historically significant methods such as plastering [1], whisker
weaving [2] and the more recent unconstrained plastering [3] can be considered
geometry-first methods. These methods begin with a well defined boundary
representation and progressively build a mesh. Most of these methods define
some form of advancing front procedure that requires resolution of an interior
void and have the advantage of conforming to a prescribed boundary mesh
where resulting element quality is normally high at the boundary. Although
work in the area is on-going, the ability to generalize these techniques for a
comprehensive set of B-Rep configurations has proven a major challenge and
has yet to prove successful for a broad range of models.

In contrast, the mesh-first methods start with a base mesh configuration.
Procedures are then employed to extract a topology and geometry from the
base mesh. These methods include grid-overlay or octree methods. In most
cases these methods employ a Cartesian or octree refined grid as the base
mesh. Because a complete mesh is used as a starting point, the interior mesh
quality is high, however the boundary mesh produced cannot be controlled
as easily as in geometry-first approaches. As a result the mesh may suffer
from reduced quality at the boundary and can be highly sensitive to model
orientation. In spite of some of the weaknesses of grid-overlay methods, they
have proven effective in a variety of applications, especially those with minimal
topology or feature capture requirements. In particular, bio-medical models
[4] [5] [6], metal forming applications [7] [8], and viscous flow [9] methods. The
method we describe in this work also utilizes a mesh-first approach.

As one of the first to propose an automatic overlay-grid method, Schneiders
[7] developed techniques for refining the grid to better capture geometry. He
utilized template-based refinement operations, later extended by Ito [6] and
H. Zhang [10] to adapt the grid so that geometric features such as curvature,
proximity and local mesh size could be incorporated. For our implementation,
we do not require sharp feature recovery or adaptively refined hexes. Instead,

Parallel Hex Meshing from Volume Fractions 3

we focus on generation of a high resolution homogeneous hex mesh from a flat
grid of volume fraction data.

Y. Zhang [4] [5] and Yin [11] independently propose an approach known as
the dual contouring method that discovers and builds features into the model
as the procedure progresses. The dual contouring method for generating a
hexahedral mesh described by Y. Zhang [4] begins by computing intersections
of the geometry with edges in the grid. Intersection locations are used to ap-
proximate normal and tangent information for the geometry. One point per
intersected grid cell is then computed using a minimization procedure that is
based upon Hermite approximations from the tangents computed at the grid
edges. The base mesh in this case is defined as the dual of the Cartesian grid,
using the cell centroids and interpolated node locations at the boundary. The
proposed method, although similar in many respects, in contrast uses the grid
itself as the basis for the FEA hex mesh rather than the dual of the grid to
compute the intersection and normal information. As a result, nodes of the
primal grid are used in the final mesh rather than generating the mesh from
the dual entities. This new primal contouring approach that we introduce
is important for our parallel implementation which avoids splitting individ-
ual cells in the domain across multiple processors and also avoids additional
interpolation of cell centered data to the nodes of the grid.

2 Algorithm

The following is a brief outline of the procedure used for generating a
hexahedral mesh from volume fraction data in parallel.

Fig. 1. 8 domains de-
fined showing cells with
volume fraction = 1.0

Fig. 2. cells with volume
fraction = 0.0

Fig. 3. cells with volume
fraction between 0.0 and
1.0

It is assumed that the application that provides volume fraction data, also
provides a parallel decomposition of an axis aligned global Cartesian grid.
Figure 1 shows an example of an eight processor decomposition containing
volume fraction data spread across subdomains. The number of parallel pro-
cessors used is the same as the number of rectilinear subdomains, where each

4 S. Owen, M. Staten, and M. Sorensen

Fig. 4. Establish parallel
Cartesian grid

Fig. 5. Estimate gradi-
ents at cell centers

Fig. 6. Assign materials
to cells

Fig. 7. Resolve non-
manifold cases

Fig. 8. Compute virtual
edge crossings

Fig. 9. Move grid points
to iso-surface

Fig. 10. Create geome-
try definition

Fig. 11. Insert hex
buffer layer

Fig. 12. Smooth

processor assumes the task of generating the complete hex mesh for its por-
tion of the global grid. Also illustrated in figures 1 to 3, each cell of the global
Cartesian grid has been assigned at least one scalar volume fraction value,
assumed to be at the cell-center of each cell of the grid. Multiple materials
may also be represented, where for each cell in the grid, exactly Nmat scalar
values, vn are provided, where Nmat is the number of materials represented in
the model and for each cell in the grid,

∑n<Nmat

n=0 vn ≤ 1.0. For each domain
in the global Cartesian grid, the following represents the procedure performed

Parallel Hex Meshing from Volume Fractions 5

on each processor and is illustrated in figures 4 to 12 and further outlined in
the following 9 steps:

Procedure for Generating A Parallel Hex Mesh from Volume Fractions

1. Establish Parallel Cartesian Grid: A light-weight grid data structure with
ghosted cells is established to store and work on the data. (Fig. 4)

2. Estimate Gradients at Cell Centers: Based upon the cell-centered data
field, gradient vectors are approximated. (Fig. 5)

3. Assign Materials: A dominant material is identified for each cell in the
Cartesian grid. (Fig. 6)

4. Resolve Non-Manifold Cases: Cells are added or deleted from the base
set of hexes for each material to resolve cases that would result in non-
manifold connections in the final mesh. (Fig. 7)

5. Compute Virtual Edge Crossings: Identify virtual edges (connecting ad-
jacent cell centers) that have endpoints bounding the iso-value. (Fig. 8)

6. Move Grid Points to Iso-Surface: Interpolating the virtual edge crossing
data, virtual cell centers (grid nodes) are projected to an interpolated
iso-surface. (Fig. 9)

7. Create Geometry Definition: A geometry description comprised of vol-
umes, surfaces, curves and vertices is established. (Fig. 10)

8. Insert Hex Buffer Layer: A layer of hexes is inserted at iso-surface bound-
ary and hex elements generated with geometry associativity. (Fig. 11)

9. Smooth: Smoothing procedures are employed for curves, surfaces and vol-
ume mesh entities to improve mesh quality. (Fig. 12)

Sections 2.1 to 2.9 provide a more in-depth description of each of the steps
of this procedure.

2.1 Establish Parallel Cartesian Grid

For our application, the size of the axis-aligned Cartesian grid for a proces-
sor is determined by the Eulerian shock hydro code. This is convenient, since
the same domain distribution used in the physics code, can be used in the La-
grangian mesh generation procedure. We can define the Cartesian grid on pro-
cessor rank p as ΩpM = {Mr

i |r = 0, 1, 2, 3} where for example M0 is a node of
the grid,M1 is an edge, and so forth. The location of grid nodes and size of cells
of ΩpM is established by defining three independent arrays in each coordinate
direction: XΩ = {x0, x1, x2, · · · , xnx+1} , YΩ = {y0, y1, y2, · · · , yny+1} , ZΩ =
{z0, z1, z2, · · · , znz+1}, where nx, ny and nz are the number of cells in the
grid in coordinate directions x, y and z respectively. Subsequent algorithms
described here, utilize the entities Mr

i |r = 0, 1, 2, 3, however for our purposes,
a lightweight representation of ΩpM is established, implicitly defining Mr

i only
as needed.

For parallel efficiency, we also establish two layers of ghost cells onΩpM . The
global domain, ΩGM is itself described as a 3D Cartesian grid containing Np

6 S. Owen, M. Staten, and M. Sorensen

subdomains ΩpM | 0 ≤ p < Np and Np = NI ·NJ ·NK where NI , NJ , NK are the
number of subdomains in each Cartesian direction. For the general case of a
processor subdomain on the interior of ΩGM , up to 26 neighboring subdomains
may be present. Communication is established from processor pI,J,K to all
of its neighboring processors pI±,J±,K± and their associated Cartesian grids,
Ωp±M . Figure 13 illustrates the communication for a simple 2D configuration.
Once ghosted cells have been communicated, XΩ , YΩ , ZΩ and nx, ny, nz are
augmented appropriately for ΩpM .

Fig. 13. Two layers of ghosting for each domain is established

2.2 Estimate Gradients at Cell Centers

Our objective is to generate hexes so that interfaces between materials are
captured. To do so, we can begin by approximating the gradient at cell centers
for each material defined on the domain. For each cell, exactly Nmat scalar
values vn = v0, v1, ...vNmat−1 are provided. We can represent the gradient for

material n at cell center (i, j, k) as5vn(i, j, k) =
(
∂vn
∂x ,

∂vn
∂y ,

∂vn
∂z

)
. For each cell

M3
i,j,k in the grid, the differences of 26 neighboring values ∆vn, and cell center

coordinate locations (∆x,∆y,∆z) at M3
i±,j±,k± can be used to approximate

the gradient. Solving for
(
∂vn
∂x ,

∂vn
∂y ,

∂vn
∂z

)
in equation (1) produces the least

squares approximation to the gradient for material n.

 ∑
∆x2i

∑
∆xi∆yi

∑
∆xi∆zi∑

∆xi∆yi
∑
∆y2i

∑
∆yi∆zi∑

∆xi∆zi
∑
∆yi∆zi

∑
∆z2i

∂v
∂x
∂v
∂y
∂v
∂z

 =

∑∆xi∆(vn)i∑
∆yi∆(vn)i∑
∆zi∆(vn)i

 (1)

Parallel Hex Meshing from Volume Fractions 7

The gradients in much of the grid will be undefined where ∆vn is small or
zero. Since the interfaces we seek are defined only where |∆vn| � 0, we can
normally ignore cases where the gradient is undefined.

Note also that for cells at the boundary of the grid, fewer than 26 ad-
jacent cells are available to for the summations in equation (1) to compute
5vn. Where neighboring processors are present, this will result in inconsis-
tent results for gradients at the processor boundaries computed on the outer
layer of ghost cells. If not resolved, this may effect the smoothness of the grid
across processors and whether the nodes conform at all. To avoid this con-
dition, once the gradients are computed, communication is established with
neighboring processors, Ωp±M and gradients in the outer layer of ghost cells on
each processor are sent and received via MPI.

2.3 Assign Materials

In this step we must assign each cell M3
i,j,k in the grid to one of the Nmat

materials in the model. Illustrated in figure 6, this is done simply by identifying
material n in M3

i,j,k with the greatest volume fraction vn. In many cases, the
void space, or absence of any material is required to be meshed. In this case,
we keep track of the void as a separate material where the volume fraction is
defined as vvoid = 1.0−

∑
vn. Separate lists of cells for each material are then

maintained.

2.4 Resolve Non-Manifold Cases

Fig. 14. Seven unique cases for non-manifold conditions in 3D at a node

Figure 6 shows a simple 2D case where materials A and B meet at a non-
manifold point. This configuration results in an invalid finite element mesh
and must be resolved prior to generating the mesh. Figure 7 shows a simple
resolution of the condition by reclassifying the assigned material in one of the
cells from material A to B. For 3D, seven unique cases have been identified,
as shown in figure 14, where a non-manifold condition may exist at a node.
Algorithm 1 illustrates how 3D non-manifold resolution is accomplished by
temporarily modifying the volume fraction vn by a small value, ε until all
non-manifold conditions have been resolved. To avoid oscillation, the value
for εk incrementally increases using a prime-like progression of floating point
values. The function resolve non manifold at node() in algorithm 1 identi-
fies which of the seven unique 3D non-manifold conditions exist at a node

8 S. Owen, M. Staten, and M. Sorensen

and enumerates hexes to be added or subtracted for the current material. In
practice, algorithm 1 normally converges within 2 to 3 iterations.

εk = {0.05, 0.07, 0.11, 0.13, 0.17, ...}; k = 0;
while non-manifold condition exists do

foreach material n = 0, 1, ...Nmat−1 do
//initialize lists of hexes to add and subtract for material n
Ladd(M

3) = ∅, Lsub(M3) = ∅;
foreach non-manifold (M0

i) ∈ ΩpM do
M3
I = M3

j |j = 0, 1, ...7 ∈M0
i ;

//add to lists Ladd and Lsub from hexes M3
I

resolve non manifold at node(M3
I , Ladd, Lsub);

end
vn(M3

i) = volume fraction of material n for M3
i ;

foreach M3
i ∈ Ladd do vn(M3

i) = vn(M3
i) + εk ;

foreach M3
i ∈ Lsub do vn(M3

i) = vn(M3
i)− εk+1 ;

end
reclassify material assignment for M3

i in ΩpM ;

communicate material assignment of ghost cells to Ωp±M ;
k = k + 1;

end
Algorithm 1: Algorithm for resolving non-manifold conditions in ΩpM

Note also that a parallel communication step is required following each
iteration of this procedure. Because identification of non-manifold conditions
depends upon checking the status of all surrounding cells of M0

i , the non-
manifold state of grid nodes at the boundary can only be established through
interprocessor communication.

2.5 Compute Virtual Edge Crossings

The next stage in defining the material interfaces for the hexes is to
compute virtual edge crossings. We would like to compute all locations on
ΩpM where the iso-value s = 0.5 crosses one of the edges of the grid. We
will use these locations in the next section to help move the grid nodes
to the interpolated iso-surface. We choose vn = 0.5 as the most likely vol-
ume fraction value where the interface surface will exist. For convenience,
rather than directly computing the crossing locations on the edges, M1

i of
the grid, we define the virtual edges of the grid as the segments connect-
ing the midpoints of adjacent cells. We can uniquely identify a virtual edge
in the grid from a face M2

i . The midpoint of its two adjacent cells, M3
j=0,1

can be defined as Pj=0,1 = center(M3
j=0,1). Similarly, the volume fraction

for material n in each adjacent cell to face M2
i can be defined as (vn)j=0,1.

Equation (2) can then be used to compute a location Pcross(M
2
i) for any vir-

Parallel Hex Meshing from Volume Fractions 9

tual edge where its two associated cells are assigned to different materials,
material(M3

0) 6= material(M3
1).

Pcross = P0 +
s− (vn)0

(vn)1 − (vn)0
(P1 − P0) (2)

Also required is the normal or gradient of material n at the location of
Pcross which can be interpolated similarly. The gradient at cells M3

j=0,1 can
be described as (5vn)j=0,1, (see section 2.2).

Ncross = (5vn)0 +
s− (vn)0

(vn)1 − (vn)0
[(5vn)1 − (5vn)0] (3)

Since Pcross and Ncross values may be used frequently, they are precomputed
for each material and associated with its respective virtual edge M2

i in ΩpM .

2.6 Move Grid Points to Iso-Surface

With information computed up to this stage of the procedure, we can now
compute locations for nodes in the grid that will form the interface between
materials. A node M0

i in ΩpM is defined as movable if at least 2 unique ma-
terials are identified from its eight surrounding cells M3

j=0,1,...7. One common

material assigned to all M3
j=0,1,...7, indicates an interior node.

Fig. 15. Variables used to move node M0
i

to an interpolated iso-surface
Fig. 16. Node M0

i after having been
moved to the iso-surface

Figures 15 and 16 illustrate the procedure for computing the new loca-
tion, Pnew for M0

i that has been identified as at a material interface. The 12
grid faces in ΩpM that contain node M0

i can be defined as M2
j=0,1,...11. These

faces also uniquely define a virtual cell who’s 12 virtual edges are defined by
M2
j=0,1,...11 with M0

i as the centroid. Using the values computed for Pcross
and Ncross for each M2

j (see section 2.5) we can define tangent planes at the

10 S. Owen, M. Staten, and M. Sorensen

material interface that cross the virtual edges. Equation (4) computes Pnew
by taking an average of the projection of M0

i onto each of the tangent planes.

Pnew =
1

nc

i<nc∑
i=0

P0 − (Ncross)i · (P0 − (Pcross)i)× (Ncross)i (4)

(Nnew)n =

∣∣∣∣∣
i<ncn∑
i=0

(Ncross)i

∣∣∣∣∣ (5)

where nc is the number of virtual edge crossings where a value for Pcross has
been computed on the virtual cell surroundingM0

i and P0 is the initial location
of M0

i . We also compute (Nnew)n as the normalized average of (Ncross)i. This
provides the local surface normal information needed for the subsequent buffer
layer insertion and smoothing operations. The subscript n in equation (5)
indicates that a separate normal is computed with respect to each material
using only (Ncross)i vectors that originate from material n.

Note that we have not distinguished between materials for the computation
of Pnew. As a result, all materials that have virtual edge crossings defined on
M0
i ’s virtual cell, will contribute to the new location. Where multiple materials

meet at M0
i , this has the effect of averaging the contribution from all materials

resulting in a reasonable approximation of the surfaces at that point.

2.7 Create Geometry Definition

Having captured the material interfaces in ΩpM , we turn our attention to
improving the mesh so that hexes are of sufficient quality for FE analysis.
Prior to doing this, however, we have found it useful to generate a boundary
representation or B-Rep of the hex structure that captures the material in-
terfaces and domain boundaries. This will prove valuable in the next stages
when we add a buffer layer of hexes, smooth the elements as well as assisting
in encapsulation and transfer of data. The B-Rep on processor p, which we
will define as ΩpG consists of entities {Gri |r = 0, 1, 2, 3} where G0 is a vertex
of the B-Rep, G1 is a curve, G2 a surface and G3, a volume. To generate the
B-Rep, we must find groups of grid entities, Mr

i of dimension r that will be
assigned to, or owned by corresponding B-Rep entities, Gri of the same di-
mension. Figure 17 shows an example of the resulting B-Rep on one processor
subdomain of the model shown in figures 1 to 3. Note that geometry entities
are generated at the processor interfaces. To better facilitate smoothing, one
layer of ghost cells is also used in the definition of the geometry. This ensures
that two layers of overlapping hexes are established between domains ΩpG and

Ωp±G facilitating the subsequent Jacobi smoothing procedure.
Starting with volumes, G3

i are established by gathering contiguous sets of
cells M3

i,j,k with the same material assignment. Surfaces G2
i are then built by

skinning or traversing the faces M2
i at the boundary of each volume, includ-

ing the boundaries at processor subdomains. Grid faces, M2
i at a subdomain

Parallel Hex Meshing from Volume Fractions 11

Fig. 17. A B-Rep, Ωp
G, is built from the

entities of the Cartesian grid Ωp
M

Fig. 18. Buffer layer hexes are
generated to be continuous across
processor boundaries

boundary can be distinguished from those on the interior of the grid which will
facilitate generation of curves, G1

i from grid edges M1
i along their interface.

Curves can also be generated along the edges where at least three materials
meet. Finally, vertices G0

i are established where more than two surfaces share
a common grid node M0

i .

2.8 Insert Hex Buffer Layer

The first stage in improving element quality is to insert a layer of hexes at
all material interfaces. To accomplish this we identify all nodes on the material
interfaces, M0

surf . These are the same nodes for which we have computed Pnew
and Nnew in equations 4 and 5. For each M0

surf , one offset buffer layer node

M0
buf must be generated for each material adjacent M0

surf . The location of

M0
surf can be defined as:

P (M0
buf)n = P (M0

surf) + tN(M0
surf)n (6)

where t is the thickness of the buffer layer and N(M0
surf)n is the normal for

material n computed in equation 5. We chose the thickness of the buffer layer
to be 1

4 the diagonal distance of the grid cell.
Because the buffer layer must be continuous across subdomain boundaries,

the geometry ownership described in section 2.7 can be used to aid in defining
its placement. Figure 18 shows an example where a volume G3 intersects the
subdomain boundary. In this case, three surfaces, G2

0,1,2 enclose the volume,
however, only one surface, G2

1, contains nodes M0
surf . Instead, surfaces G2

0

and G2
2 are used only to cap the volume where it intersects the boundary.

For our purposes, we designate G2
1 an interior surface, and G2

0 and G2
2 as

capping surfaces. Using the same criteria, in this example we designate the
curves G1

0,1,3 as interior and G1
2 as capping.

12 S. Owen, M. Staten, and M. Sorensen

With this information, we visit each capping entity (G1,2
i)cap and insert

buffer edges or quads at its boundaries. For example, for curve G1
2 in figure

18, two buffer mesh edges M1
buf are inserted into G1

2 at vertices G0
0 and G0

1.

In a similar manner, we insert buffer quad elements M2
buf in surface G2

0 only

adjacent to its interior curve G1
0. Finally, the buffer hex elements M3

buf are

constructed adjacent the quads on interior surface G2
1.

2.9 Smooth

We now turn our attention to improving the element quality by smoothing.
We require that the subdomain boundaries not impose artificial constraints on
the quality and location of the nodes. Furthermore we require parallel-serial
consistency, or in other words, the same mesh must be generated regardless
of the number of processors or the location of subdomain boundaries. To
accomplish this we establish communication between ΩpM and neighbors, Ωp±M .

Fig. 19. Node locations on ghost hexes are are communicated following each
smoothing iteration

Following each iteration of smoothing, to ensure a continuous mesh with
identical node locations computed at subdomain boundaries, a communica-
tion step must be performed. To do so, we require all nodes on processor p
that are within its ghost layer, receive updated nodal coordinates from its
neighbors p±. To facilitate this, we first identify lists L(M0

i)p→p± of all nodes
M0
i in ΩpM that are part of the two ghost layers at its boundary, and that

have been previously assigned to a geometry entity G0,1,2,3. This includes any
nodes generated to form the buffer layer from entities in the ghost layers. Each
list, L(M0

i)p→p±, will contain nodes that are ghosted from a unique neigh-
boring processor, p± to the host processor p. The locations of the nodes in
L(M0

i)p→p± on processor p, are then sent to neighboring processors p±. Neigh-
bor processors, p± then determine the corresponding node in Ωp±M for each
location sent to it from processor p and form corresponding lists L(M0

i)p±→p.
These lists comprise all nodes which must be sent to neighboring proces-

Parallel Hex Meshing from Volume Fractions 13

sors following each iteration of smoothing. Corresponding nodes M0
i on Ωp±M

from locations received from ΩpM can be identified using a spatial tree search
since locations should be identical on both processors. The lists L(M0

i)p±→p

must be set up prior to any smoothing, since node locations will change once
smoothing has begun. Figure 19 illustrates a simple two processor example
where node locations in each of the lists L0→1 and L1→0 are communicated.

Node smoothing consists of several iterations of successively smooth-
ing nodes M0

j on geometric entities starting with curves G1
i (M

0
j), surfaces

G2
i (M

0
j), and then volumes G3

i (M
0
j). Rather than traditional Gauss-Seidel

smoothing that relies on a order-dependent incremental update of node loca-
tions, we use a Jacobi approach that uses the initial locations of the nodes at
the start of the iteration.

For most cases we can neglect curve smoothing, as most interior and cap-
ping curves reside in ghost regions which are updated by the parallel com-
munication discussed previously. For curves at the absolute domain bound-
aries a simple one-dimensional Laplacian smooth is performed on a piecewise
quadratic approximation of the nodes.

For interior surfaces, since an explicit representation of the surface is not
available, we use a quadric approximation of the nodes M0

surf [13] that is
centered at the node to be smoothed Pk(xk, yk, zk).

Qk(x, y) = zk + ak2(x− xk) + ak3(y − yk) + ak4(x− xk)2

+ak5(x− xk)(y − yk) + ak6(y − yk)2
(7)

Fig. 20. Quadric approximation of surface from surrounding nodes at Pk is per-
formed

We first transform nodes attached by edges to Pk to a local coordinate
system centered at Pk with orientation defined by (Nk, T1, T2) as shown in
figure 20, where Nk is the surface normal at Pk and (T1, T2) are orthogonal
tangent vectors. Coefficients ak2,k3,...,k6 for equation (7) can then be computed
by solving the linear system:

14 S. Owen, M. Staten, and M. Sorensen
∑
wix

2
∑
wixy

∑
wix

3
∑
wix

2y
∑
wix

2y2∑
wixy

∑
wiy

2
∑
wix

2y
∑
wixy

2
∑
wixy

3∑
wix

3
∑
wix

2y
∑
wix

4
∑
wix

3y
∑
wix

2y2∑
wix

2y
∑
wixy

2
∑
wix

3y
∑
wix

2y2
∑
wixy

3∑
wixy

2
∑
wiy

3
∑
wix

2y2
∑
wix

2y2
∑
wiy

4

ak2
ak3
ak4
ak5
ak6

 =

∑
wixz∑
wiyz∑
wix

2z∑
wixyz∑
wiy

2z

(8)

where x = xi − xk, y = yi − yk, z = zi − zk and wi is an inverse distance
weight. A Laplacian smoothing operation can then be performed on node Pk
to get a smoothed location P ′k in the local coordinate system. The point P ′k
is then projected to the quadric surface, also in the local coordinate system
using:

(Pk)local =

 (P ′k − Pk) · T1
(P ′k − Pk) · T2

ak2xk + ak3yk + ak4x
2
k + ak5xkyk + ak6y

2
k

 (9)

Finally, the new location (Pk)new in the original coordinate system is com-
puted as:

(Pk)new = Pk + (Pk)Tlocal

T1
T2
Nk

 (10)

Fig. 21. Smoothing

For volumes, we also use a Jacobi Laplacian smoothing method to smooth
interior nodes G3

i (M
0
j). In practice we have found that Laplacian smoothing

alone is not sufficient to generate acceptable quality. Instead, after an initial
two iterations of Laplacian smoothing, an optimization-based approach us-
ing the Mesquite toolkit [12] is used for subsequent iterations. This requires
both untangling and mesh optimization which the ShapeImprovement tool in
Mesquite is able to provide. Figure 21 shows typical results over 10 iterations

Parallel Hex Meshing from Volume Fractions 15

of Jacobi smoothing on a model with approximately 500,000 elements. The left
graph compares minimum Scaled Jacobian using just Laplacian smoothing vs.
using combined Laplacian and the Mesquite ShapeImprovement smoother af-
ter the second iteration. On the right, results from the same model are shown,
except that the percent of elements with Scaled Jacobian less than zero is
displayed. These results show that two iterations of Laplacian smoothing,
combined with two iterations of ShapeImprovement optimization is sufficient
to drive the elements to a computable range.

In practice, Laplacian smoothing is much faster than optimization-based
smoothing and is able to make enormous improvements with very small cost.
For this reason, we do not start with the Mesquite ShapeImprovement op-
timization. Also, to improve efficiency, we limit application of the ShapeIm-
provement procedure to only those patches of elements where the scaled Ja-
cobian mesh quality falls below a threshold of 0.2. These small patches of ele-
ments must be consistently identified on all processors, therefore, an additional
communication step is required to communicate element patches smoothed in
ghost regions.

3 Examples

Fig. 22. Hex mesh constructed on eight processors and its associated timing data

We show several examples to illustrate the proposed capability. The first
example shown in figures 22 and 23 illustrates several geometric primitives, or
shapes diatoms, that have been converted to volume fractions on a Cartesian
grid and then hex meshed. Scalability results, shown in figure 22 are still
preliminary and illustrate up to an eight processor decomposition generating
approximately 2.26 million elements. Timing results include I/O beginning
with initial volume fraction data with one file per processor and resulting

16 S. Owen, M. Staten, and M. Sorensen

Fig. 23. Detail of helix in shapes diatom model in fig. 22 at two different resolutions

in a Lagrangian mesh file for each processor that contain conforming node
locations at the subdomain interfaces. The oscillating pattern observed in the
timing results is most likely an artifact of the domain decomposition of odd vs
even configurations. Similar timing results were also observed in subsequent
examples. The two helix images shown in figure 23 are an enlarged view of
one of the objects in figure 22 modeled at two different resolutions where color
represent different processors. Note the smoothness of the surfaces at higher
resolution even across processor boundaries.

Fig. 24. Hex mesh of ball impact on plate at one selected time step.

In figure 24 a series of results at time step intervals have been computed
with CTH of a sphere impacting a plate. The results have been exported
as volume fraction data and processed at one selected time step using the
proposed procedure. In figure 25 we illustrate a hex mesh at two time steps
of a simulated pipe bomb explosion that was computed with CTH.

Parallel Hex Meshing from Volume Fractions 17

Fig. 25. Close-up view of hex meshes generated at two different time steps of a
simulated pipe bomb explosion

Fig. 26. Hex mesh of simulated grain microstructure with 15 different materials.

The final example, shown in figure 26 is a hex mesh generated from volume
fraction data, also computed from CTH, representing a simulated microstruc-
ture of a material having columnar type grain structure with isolated porosity.
This model contains 15 materials and 1.6 million elements generated on eight
processors.

4 Conclusion

This work introduces a step-by-step procedure for generating a hexahedral
mesh from volume fraction data defined on a Cartesian grid. Contributions
include improved methods applicable for both serial and parallel processing
including a new primal-contouring approach for defining multiple material do-
mains, new methods for node smoothing, resolving non-manifold conditions
as well as defining geometry for parallel subdomains. We recognize that we are
still in the research phases of this project, and that there are many areas left

18 S. Owen, M. Staten, and M. Sorensen

to explore. We would anticipate that the results of such research would move
this technology towards a scalable tool that can be robustly used for coupling
Eulerian and Lagrangian codes. We do however offer that these methods im-
prove on existing techniques proposed in the literature particularly as they
apply to parallel mesh generation using overlay grid methods.

References

1. Blacker TD, Meyers RJ (1993) Seams and Wedges in Plastering:A 3D Hexahe-
dral Mesh Generation Algorithm, Engineering with Computers, 2(9):83–93

2. Tautges TJ, Blacker TD, Mitchell SA (1996) The Whisker Weaving Algorithm:
A Connectivity-Based Method for Constructing All-Hexahedral Finite Element
Meshes, International Journal for Numerical Methods in Engineering, 39:3327–
3349

3. Staten ML, Kerr RA, Kerr, Owen SJ, Blacker TD (2006) Unconstrained Paving
and Plastering: Progress Update, In: Proceedings, 15th International Meshing
Roundtable 469–486

4. Zhang Y, Bajaj CL (2006) Adaptive and Quality Quadrilateral/Hexahedral
Meshing from Volumetric Data. Computer Methods in Applied Mechanics and
Engineering 195: 942–960

5. Zhang Y, Hughes TJR, Bajaj CL (2007) Automatic 3D Mesh Generation for a
Domain with Multiple Materials. Proceedings of the 16th International Meshing
Roundtable: 367–386

6. Ito Y, Shih AM, Soni BK, (2009) Octree-based reasonable-quality hexahedral
mesh generation using a new set of refinement templates, International Journal
for Numerical Methods in Engineering, 77(13):1809–1833

7. Schneiders R, Schindler F, Weiler F (1996) Octree-based Generation of Hex-
ahedral Element Meshes, In: Proceedings of the 5th International Meshing
Roundtable, 205–216

8. Kwak DY, Im YT (2002) Remeshing for metal forming simulations - Part II:
Three-dimensional hexahedral mesh generation, International Journal for Nu-
merical Methods in Engineering, 53:2501–2528

9. Tchon KF, Hirsch C, Schneiders R (1997) Octree-based Hexahedral Mesh Gen-
eration for Viscous Flow Simulations, American Institute of Aeronautics and
Astronautics A97-32470 781–789

10. Zhang H, Zhao G (2007) Adaptive hexahedral mesh generation based on local
domain curvature and thickness using a modified grid-based method, Finite
Elements in Analysis and Design, 43:691–704

11. Yin J, Teodosiu (2008) Constrained mesh optimization on boundary, Engineer-
ing with Computers 24:231-240

12. Brewer M, Freitag-Diachin L, Knupp P, Leurent T and Melander D, (2003) The
Mesquite Mesh Quality Improvement Toolkit, Proceedings, 12th International
Meshing Roundtable, 239–250

13. Jones NL (1990) Solid Modeling of Earth Masses for Applications in Geotech-
nical Engineering, Dissertation, University of Texas, Austin

